A Simple Proof of Watson's Partition Congruences for Powers of 7

نویسندگان

  • F. G. GARVAN
  • J. H. Loxton
چکیده

Ramanujan conjectured that if n is of a specific form then/>(«), the number of unrestricted partitions of n, is divisible by a high power of 7. A modified version of Ramanujan's conjecture was proved by G. N. Watson. In this paper we establish appropriate generating formulae, from which Watson's results follow easily. Our proofs are more straightforward than those of Watson. They are elementary, depending only on classical identities of Euler and Jacobi. Watson's proofs rely on the modular equation of seventh order. We also need the modular equation but we derive it using the elementary techniques of O. Kolberg. 1980 Mathematics subject classification (Amer. Math. Soc): 10 A 45; Secondary 10 D 23.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences for Andrews ’ Spt - Function modulo Powers of 5 , 7 and 13

Abstract. Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo for all primes ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the pow...

متن کامل

Congruences for Andrews’ Spt-function

Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo ` for all primes ` ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the powers of...

متن کامل

`-adic Properties of the Partition Function

Ramanujan’s famous partition congruences modulo powers of 5, 7, and 11 imply that certain sequences of partition generating functions tend `-adically to 0. Although these congruences have inspired research in many directions, little is known about the `-adic behavior of these sequences for primes ` ≥ 13. We show that these sequences are governed by “fractal” behavior. Modulo any power of a prim...

متن کامل

Congruence properties for the partition function.

Eighty years ago, Ramanujan conjectured and proved some striking congruences for the partition function modulo powers of 5, 7, and 11. Until recently, only a handful of further such congruences were known. Here we report that such congruences are much more widespread than was previously known, and we describe the theoretical framework that appears to explain every known Ramanujan-type congruence.

متن کامل

The Andrews–Sellers family of partition congruences

In 1994, James Sellers conjectured an infinite family of Ramanujan type congruences for 2-colored Frobenius partitions introduced by George E. Andrews. These congruences arise modulo powers of 5. In 2002 Dennis Eichhorn and Sellers were able to settle the conjecture for powers up to 4. In this article, we prove Sellers' conjecture for all powers of 5. In addition, we discuss why the Andrews-Sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1984